

"Guía aplicación movimientos rectilíneos acelerados y desacelerados N°3"

Profesor(a):	Camilo Peña				
Correo:	cpena@ccechillan.cl				
Instagram:	Profisica_camilo_p				
Curso	Segundo medio	Fecha máxima de envío	Miércoles 10 de junio		
Objetivo de aprendizaje:	Aplicar contenidos sobre movimientos acelerados y desacelerados				
Fechas	Todos los miércoles de 16:00 a 17:00 hrs				
resolución de dudadas	Transmisión en vivo instagr	dIII			
Verificación	Lo trabajado lo puede enviar al correo, mediante una fotografía adjunta, o a través de Instagram				

Contenidos para realizar los ejercicios:

Fórmulas del movimiento rectilíneo:

1)
$$vf - vi = axt$$

2)
$$vf^2 - vi^2 = 2 x a x d$$

Los símbolos significan lo siguiente:

vf: Velocidad final (m/s) a: aceleración (m/s²) t: tiempo (s)

vi: Velocidad inicial (m/s) d: distancia o desplazamiento (m)

Apliquemos las fórmulas:

Ejemplo n° 1: Un carrito parte del reposo, alcanzando una velocidad de 2 m/s , durante 5 segundos. Calcular la aceleración y el desplazamiento.

Desarrollo:

Paso 1: Identificar los datos Velocidad inicial: 0 Velocidad final: 2m/s Tiempo: 5 segundos (cuando se hable de reposo, vi es cero)	Paso 2: Identificar fórmula : Si en el ejercicio no me indican los metros , osea la distancia, debemos utilizar la 1 $vf - vi = a \ x \ t$
Paso 3: Reemplazo para obtener aceleración primero $2\frac{m}{s} - \frac{0m}{s} = a \times 5 segundos$. Restamos $2 - 0 = 2m/s$, luego el 5 pasa dividiendo de esta manera 2: $5 = 0.4 m/s^2 = aceleración$	Paso 4: Con el valor de la aceleración , podemos obtener la distancia , utilizando la formula 2 $vf^2-vi^2=2\ x\ a\ x\ d$ Reemplazo : $2^2\frac{m}{s}-0^2\frac{m}{s}=2\ x\ 0.4\frac{m}{s^2}x\ d$ $4-0=4$, luego divido por el resultado de la multiplicación entre 2 y 0,4. Finalmente sería $4:0.8=5m=$ distancia

En resumen: Para realizar los ejercicios, deben utilizar los pasos que le indique, identificar las formulas y aplicarlas. Con el resultado de un ejercicio, pueden hacer el otro.

Ejercicios: Desarrollar los problemas propuestos, utilizando las fórmulas y basándose en el ejemplo. Hacer el desarrollo de los ejercicios

1) Un motociclista lleva una rapidez de 70km/h, en una recta. Luego desacelera a 20km/h, durante 2 minutos.

En este tipo de problema se aplican las mismas fórmulas, sin embargo, se deben hacer transformaciones previo utilizar las fórmulas. Cuando aparezca km/h se debe transformar a m/s, esto se hace simplemente dividiendo en 3,6. Cuando aparezca minutos, se debe transformar a segundos. Para ello se debe multiplicar por 60.

- b) Calcular distancia (1577,77metros) respuesta
 2) Una rueda que parte del reposo, alcanza una velocidad de 15km/h durante 10 segundos.
- a) Calcular la aceleración (0,41m/s²) respuesta

a) Calcular la desaceleración (0,11m/s²) respuesta

b) Calcular distancia (21,10 metros) respuesta

- 3) Un Carrito parte del reposo, alcanzando una velocidad desconocida, en un lapso de 2 minutos. Calcular la velocidad final, si este carro acelera a razón de 0,25m/s². (60m/s respuesta)
- b) Calcular distancia recorrida (7200 metros)

Los gráficos se hacen de la siguiente forma: No necesariamente los gráficos deben ser todos iguales, dependerá de los datos.

Tiempo
1s
2s
3s
4s
5s
6s
7s

T T							1	
Distancia								
(m)								
35								
30								
25	_							
20								
15								
10								
5								
Tiempo (s)		1	2	3	4	5	6	7

Graficar las siguientes tablas

1)

Distancia	Tiempo
4m	3s
20m	6s
50m	9s
90m	12s
135m	15s
180m	18s
250m	21s

	1			

2)

Velocidad	Tiempo
49m/s	1s
42m/s	2s
35m/s	3s
28m/s	4s
21m/s	5s
14m/s	6s
7m/s	7s
0m/s	8s

velocidad				
Tiempo				